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 The corner has important features and useful information from the objects in the 

image. The extraction of corner points is most often used in the preprocessing of 

image analysis. Therefore, it is considered as one of the most important and 

fundamental stages of image processing. In addition, it plays an essential role in 

machine vision and image enhancement, image compression, image matching, image 

tracking, and so on. In this article, corner points are detected in images using 

polynomials. A discrete orthogonal polynomial is a useful digital image processing 

tool for extracting object contours in various applications. Therefore, in the corner 

detection step algorithm, the Krawtchouk polynomial is used in the edge detection 

step. In the next step, an anisotropic direction derivative is calculated at each pixel in 

the contour, and finally the removal of the non-maximum suppression and the 

threshold in each contour is used to find the corners. The results of the experiments 

show that the proposed method has a good performance compared to other common 

algorithms. 
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1. Introduction 

Corner Detection is based on images of dynamic and up-

to-date topics in the image processing and machine 

vision. The corners contain important image information 

and are widely used in various image processing 

operations. A corner can be defined as the intersection of 

two edges. Also, a corner can be defined as a point where 

the two edges are strong and dominant in a neighborhood 

of points. By definition, the corners are points of the 

image that changes in the degrees of gray in their 

neighbors are severe and therefore can be distinguished 

well from their neighboring points [1]. 

The methods for extracting corner points can be divided 

into two main categories [19]: 

• Intensity-based method: A predetermined scale to 

estimate points of interest directly estimate the 

pixel values of the image. 

• Contour-based method: First, it provides a flat 

curve using edge detectors, then the highest point 

that has a curvature in the curve. 

Of course, in some articles, another category is also 

called template-based methods. A pattern-based model 

finds corners by setting the image signal into a predefined 

model. As outlined in [2], corner detection methods use 

different representation patterns to match the image based 

on the pattern. The relationship between the pattern and 

the image is used to identify the corner. However, this kind 

of method has some drawbacks. For example, the 

representative model cannot cover all possible corner 

conditions. Therefore, the diagnostic function depends on 

the choice of the appropriate pattern. Moreover, the 

relationship between the pattern and the image is 

determined. Corner detection techniques are based on 

contour based edge detection. In this set of methods, the 

edges are identified in the first image. After that, the 

corners are identified along the path. The first corner 

detector, or indeed the start of corner detectors, was 

Moravec Corner detection. Moravec has proposed a 

corner detector for points of interest, taking into account 

a local window in the image and determining the average 

variation in the intensity obtained by moving the window 

with small steps in four directions [20]. Harris has 

modified Moravec's algorithm, which is done by 

estimating autocorrelation from first-order derivatives 

[4]. Since the derivative is used in this method, this 

method is sensitive to noise. Smith and Brady have 

presented a straightforward method known as Susan and 

not dependent on the derivative of the image. usan areas 

reach a minimum when they are at the corner. The susan 

algorithm is not sensitive to noise, and it has a high speed 

in that it uses simple operators [1]. 
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Some of the famous corner detection methods 

include: Susan Detector, Harris Detector, Wavelet 

Detector. The original Harris detector was presented in 

[4] and the corner measure is constructed from the local 

auto correlation matrix of the gradients in different 

directions [12]. Auto correlation function measures the 

self-similarity of a signal. After calculating this matrix, 

there are three situations. Note that this is a 2 x 2 matrix, 

and so there are two eigenvalues for this matrix. If both of 

the eigenvalues are large, that means the feature point is 

a corner. [4]. 

The main idea of the Harris detector is to calculate eigen 

values and eigen vectors of a small area [4, 5]. 

Then, using the largest of the two eigen values to compute 

some of the functions. Finally, it uses the value of the 

function and one threshold for corner detection. The 

susan corners detector was presented in [6]. susan corner 

detector does not need to be derived. This is why it can 

detect corners well in the presence of noise [6]. The main 

idea of the Susan detector is to use a mask to count the 

number of pixels with the same intensity as the center of 

the pixel [3]. By comparing the number of pixels with the 

same intensity with the center pixel and a threshold, the 

detector can determine if the pixel is the center of one 

corner. Information on a wavelet-based detector is 

presented in [3]. Since the Susan detector and the Harris 

detector are both the most well-known corner detectors, 

the authors in [7] compared the performance of these two 

detectors in terms of complexity, stability, and execution 

time. The simulation results showed that the Harris 

detector is better than the Susan detector. As described in 

[7], Susan uses a fixed overall threshold instead of an 

adaptive threshold. 

 In 2010, in a paper [8], Zhang et al. Proposed a new 

multi-dimensional nonlinear structure based on the 

corner detection algorithm to improve the efficiency of the 

Harris corner detection algorithm. Considering both the 

distance and the gradient of the distance from the 

neighboring pixels, a nonlinear two-way tensor structure 

is constructed to examine the local pattern of the image. 

In addition, a multi-scale filter design has been developed 

to express the partial structures of real corners based on 

their different characteristics on different scales. The 

comparison between suggested methods shows that it has 

better performance in both the detection and focusing 

accuracy of the corners. 

In 2011, Zhang et al. [9] presented a feature detector 

named Harris Laplace's Improvement to obtain a 

repeatability above the original Harris Laplace. In this 

new method, all detected points are tracked and grouped 

at each scale starting with the largest scale on the scale of 

the scale, which makes each group represent a local 

structure at first stages Then the point in each group is 

simultaneously directed to the maximum points of the 

measured corner and the normalized scale of the Laplace 

function is chosen. Finally, these points are described in 

terms of the fixed-value conversion scale (SIFT). 

Experimental results show that the proposed method has a 

higher repeatability than the original Harris Laplace. 

Meanwhile, the new method was investigated by 

registration the image. Compared to (SIFT), the accuracy 

of the recorded precision was obtained more precisely 

than several sensors of remote sensing images using 

advanced methods. In this method, the Harris points are 

tracked in all the images smoothly on the scale of space 

and simultaneously. the points detected from all scale 

levels in scale–space were assigned into different groups 

according to certain rules. Then the most characteristic 

point was selected as final feature point in each group 

and the other points were discarded. So the redundant 

points can be removed during the detection step to 

decrease the complexity of following computation [9]. 

Experimental results confirmed that the improved detector 

has higher repeatability and higher accuracy than the 

original Harris Laplace. 

Many Harris corner detectors only use black and white 

data from an image, however, color information is wasted 

from an image. In 2013, using color information from the 

image, a New Harris corner Point Detector was proposed 

in [10]. In this method, the Harris corner detector uses a 

gray image using gray level information and a color 

image using the RGB data. After the corner points are 

identified in both black and white and color images, cross 

correlation, and consensus samples are randomly used to 

find matching points of the corner. This paper is 

organized as follows. In the second part, the proposed 

method and a series of related concepts are presented. 

Experiments and performance comparison are reported in 

third section. Finally, the Conclusion of the paper is 

presented in the fourth section. 

 

2. Proposed Method 

This section describes the proposed algorithm for 

extracting corner points in the images and describes the 

various sections. This method tries to detect corners in 

images using polynomials. In this paper, the method 

ANDD[12], edge detection algorithm using 

polynomial[15] is used. A discrete orthogonal polynomial 

is a useful digital image processing tool for extracting 

object contours in various applications. Thus, in this 

paper, at the edge detection stage an alternative method 

that extends beyond the classical first-order differential 

operators is expanded using the orthogonal Krawtchouk 

polynomial properties to reach a first-order differential 

operator [15]. Therefore, image smoothing with a two-

dimensional Gaussian filter is not required to adjust 

the derived type [15]. The related concepts and the full 

description of the proposed algorithm are described 

below. 
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2-1. Anisotropic Directional Derivatives 

The edges and corners are anisotropic features in the 

images. Conventional edges and corners detection 

methods often use gradients to create anisotropic intensity 

difference around an edge or corner pixel [12]. 

Generally, the gradients are derived from anisotropic 

Gaussian filter, which follows two first-order partial-

order operator [11]. The use of an isotropic Gaussian 

smoothing operator and gradient is a dilemma. Small-

scale Gaussian filters with good positioning and 

resolution are good edges, but are sensitive to noise, 

while Gaussian filters are robust against noise, but in 

localization (position) and clarity of the edges is weak. In 

this section, description of Gaussian Anisotropic 

Directional Derivatives has been presented [12]. The 

anisotropic directional derivative (ANDD) is calculated 

by a Gaussian smoothing filter through a directional 

derivative operator. An anisotropic directional derivative 

(ANDD) describes not only the intensity of the change 

around a pixel, but also the corner detection potential 

[11]. This makes it possible to provide a corner detector 

based on the ANDDS. In this section, the concept and 

features of the ANDDS are briefly examined and their 

ability to identify the corners is shown. 

 

2-1-1. Anisotropic Gaussian kernels and an anisotropic 

Gaussian directional derivative 

A long two-dimension Gaussian function is expressed as 

follows [12]:  

2

, 2 2 2

01 1
( ) exp( )

2 2 0

                                   1, 0, [ , ]
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g x X X
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 

  

 (1) 

In the above relation, σ is the scale, ρ ≥ 1 is anisotropic 

factor  and � = [�, �]�. 

Its partial derivative with respect to the second variable is 

as follows:  

2
,

,2
( ) ( )p

g y
x g x

y

 
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



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
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By turning the argument in formula (1) under an angle θ, 

an anisotropic Gaussian kernel is obtained as follows:  

, , ,

cos sin
( ) ( ),

sin cos
x g R X R      

 


 
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   
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 (3) 

Where θ is the rotation angle and  
 �  is the rotational 

matrix. , An ANDD filter is extracted in the π / 2 + θ 

direction as follows: 

,

, , ( ) ( )
g

x R X
y

 
   





 (4) 

The anisotropic directional derivative of an image I (x) in 

the direction of π / 2 + θ with a convolutional operator is 

obtained by the following equation: 

, , , , ,( ; ) ( * ( )) * ( )I x I x I x       
  


  


(5) 

 

Which is the characteristic of the variation of intensity 

around a pixel x. 

In Fig. 1 Gaussian anisotropic kernel and ANDD filter 

are plotted in eight directions. Some corner detectors 

based on the intensity of use and gradient operator on the 

image smoothed by the isotropic Gaussian kernel are 

calculated. Isotropic Gaussian smoothing ensures that the 

image is indeterminate at the edges and corners, which 

are often singular singularities of an image function. 

However, smoothing also blurs local structures at the 

edges and at the corners. Therefore, the oriented 

derivatives in all directions are determined by the second 

partial derivative, and partial derivatives are difficult to 

distinguish between different types of corners. The recent 

edge or corner detectors use an Oriented multi-

dimensional banked filter instead of a gradient operator 

to identify the anisotropic local structures on the edges 

and corners. Similarly, the ANND filter can also be 

interpreted as a directed bank filter and can extract 

anisotropic intensity variations around edges and corners 

pixels. 

 

 
Figure 1- Anisotropic Gaussian kernel in eight directions  

[12] 

 

 
Figure 2- is an anisotropic direction derivative (ANDD) filter in eight 

directions [12] 

 

The first two rows in Figures 1 and 2 represent the 

anisotropic Gaussian kernel in eight directions. Each 

kernel can suppress the noise while maintaining its edges 

along its axis of direction. 

Representation of the directional derivative uses a unique 

smoothing kernel in each direction.  Anisotropic 

smoothing not only suppresses noise, but also maintains 

an anisotropic structure of corners and edges. The ability 

of anisotropic Gaussian smoothing kernels to be clearly 

determined by their σ scale is independent of the 
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anisotropic factor ρ and the angle θ. The anisotropic 

directional derivative per pixel describes the variation of 

the directional intensity around the pixel. An anisotropic 

directional derivative can be used to identify different 

types of corners and smooth edge pixels.  In addition, the 

anisotropic directional derivative is a periodic function 

with period π. As a result, an anisotropic directional 

derivative at a distance [0, π] is sufficient to describe the 

variation of the intensity direction around a pixel. 

 

2-1-2. Discrete anisotropic direction derivative filters 

Images are two-dimensional discrete signals in the 

integer 
2z networks. Therefore, anisotropic direction 

derivative filters should be transmitted to their discrete 

forms. The discrete anisotropic Gaussian kernels and 

anisotropic direction derivative filters are created 

according to the equation (6): 
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(6) 

where K is the number of direction and the vector of the 

integer � = [�
 , ��] represents the integer coordinates. 

From the discrete ANDD filter, the ANDD discrete 

representation is calculated as follows: 

, ,
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 (7) 

Where m and n denote the coordinates in the integer 2-

dimensional ��  network. The area representation of the 

discrete normal ANDD, the remaining representatives of 

the ANDD, and the remaining area is calculated as 

follows: 
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(8) 
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(9) 

The flowchart of the proposed algorithm is as follows: 

 
Figure 3-Flowchart Proposed Algorithm 

 

The following is an explanation of each part of the 

flowchart of the proposed algorithm. 

 

2-2.Expression of the proposed algorithm using 

Krawtchouk polynomial 

Part I: 

 Detect edges of the image based on 

Krawtchouk's polynomial: 

        The edge detection algorithm is defined as: 

1. Calculate gradient value matrix 

The �
  and �� matrices are calculated based on the 

Krawtchouk polynomial. At each point (i, j), the gradient 

coefficient G (i, j) is defined as follows: 

     2 2, , ,     x yG i j P i j P i j   (10) 

 

2. Find the first threshold value and the strong 

points of the edge 

The first level of the adaptive threshold is obtained as 

follows: 

  
  

1
,

        standard deviation ,

h mean G i j k

G i j

k R




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

ε

 (11) 
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3. Calculate the second level of the threshold and 

the weak points of the edge 

Only the point (��, ��)for each mean �(�, �))< (��, ��) <
���  mean is investigated and the second threshold ��� <
���  using the following formula Obtained: 

  
 

2 1 1

1 1

,

         standard deviation ( , )

h
mean G i j k

G i j

  


 (12) 

If �(��, ��) > ��� , then the point (�, �)is identified as a 

weak edge point. 

4. declration edge points 

4.1. Every strong point of the edge is considered 

as an edge point. 

4.2. A weak edge point is considered as an edge 

if at least some of 8 pixels in the 

neighboring area are the strong edge point. 

5. Performing morphological operations 

The matrix obtained from the edge points using the above 

algorithm is a matrix with discontinuous and thick edge 

points. In order to avoid this result, morphological 

operations must be performed, which can be defined as 

the combination of two dilation and erosion operations. 

Thus, the image of the final edge of E is obtained by 

performing in the first place the thinning operation and 

finally the linked operation. 

 

Part II: 

This block involves extracting the contours and 

connecting them to each other. 

1-contour extraction: Extract from the edge map of the 

lines and contours. Each contour is represented by a 

chain code as follows: 

1 2
, ,....,

 P ( , ), 1,2,......,

n

i i i

C P P P

where x y i n



 
 (13) 

Where the  �� = (�� ,��)  is, the i pixel position is in the 

chain code. The �� = �� is for loop contour and �� ≠ �� 

for open contour. 

 

2-Filling and connecting: For the end of p in Ω, if in its 

neighborhoods of a given size (for example, 5 × 5) 

contains the endpoint, the nearest one of the p's is 

selected as Q and the intervals between p, Q are filled. 

When P and Q are identical in the contour direction, the 

filled contour is tagged as a ring contour, and P and Q 

are removed from it. When P and Q are in two contours, 

they are connected to an open contour, and P and Q are 

removed from Ω. 

 

3-Stretching Open Contours: If the neighboring end of 

an open contour contains edge pixels in other contours, it 

extends to the nearest pixel edge in the other contour, 

which causes many of the missing corners selected in the 

detection of edges and contour extraction. 

 

 

Part III: 

This block contains decision making for the corners 

through the residual area. The proposed corner detector 

uses the remaining area as the corner measure to select 

the corner of each contour, consisting of three stages: 1) 

Calculation of corner measurement 2) Non-Maximum 

suppression and 3) Threshold. 

1) Calculation of corner measurement: Assume c 

= {p1, p2, ..., pn} is a contour extracted. At each 

pixel on the contour C, calculate the normalized 

ANDD representation and corner measurement, 

residual R-area(pi) is calculated as follows: 
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(14) 

2) Non-maximum suppression: Only the local 

maximum of corners in the contour is shown as 

the candidate corner. Let the width of the 

window for the non-maximum suppression be 

2L+1.a pixel p in the contour c is a candidate 

corner if: 

( ) max{ ( )

                                , 1,2,...., }

i i l
R area P R area p

l L

  


 (15) 

3) Threshold:   is a predefined threshold for corner 

decision making that is empirically selected. Its 

value is 0.12. A pixel   is considered as a corner 

if: 

( )R area P    (16) 

 

2-3. Description of the Krawtchouk polynomial  

In the method of detecting the edges of images using 

polynomials, a new form is obtained to obtain a derivative 

estimate at each point of the image using a discrete 

orthogonal polynomial family, called 

a Krawtchouk polynomial, which are orthogonal to the 

distribution of binaries [13,15]. In the remainder of this 

section, some definitions and features of the Monic 

Krawtchouk polynomial are presented in one variable 

[15]. 

Definition1:Let  
+,ℕ , Ʌ. = /0,1,2, … , +3, 4 ∈ [−1,1]And 9.,: (�) is 
the weight function. 
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 ,     ,(1 )x N x

N N

N
x for all x

x
    

   
 

ε  (17) 

It is said that B�
:(�, +) = �� + ⋯ with n≤N, is the nth 

monic Krawtchouk polynomial with respect to the pair 

(Ʌ. , 9.,:) if: 
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for all j=0,1,…,N, where 〈. , . 〉.,: = 〈. , . 〉ɅG,HG,I 

Obviously, the binomial theorem is normalized to the 

weight formula 17.the nth monic Krawtchouk polynomial 

in one variable can be generated. 
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where  (J)K  denotes the Pochhammer symbol or shifted 

factorial . The normal state is obtained from a polynomial 

of degree integer in Formula 19. 

     
2 2

,
,

0

2 2

., ,  

                     ! ( )

N

n n N
N

i

n

k N k i N i

N
n

n

 




 





 
  
 


 

(20) 

If f is a function of a variable, the first-order difference is 

the ∆MN(�) = N(� + 1) − N(�), ∆N(�) = �
�

(N(� + 1) −
N(� − 1)). So that the difference Δf from the first order is 

usually the central difference formula on the two nodes 

[16]. In the function f with two variables, the partial 

difference of the first order is defined as follows: 
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 (21) 

The Krawtchouk polynomials are used because they allow 

closed definitions to be derived for discrete derivatives of 

polynomials with one or two variables. 

For the 2D monic Krawtchouk polynomials, the following 

difference formulas are as follows [17]: 

      1 2 1 2,
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, 2 1, , ,y n m y m mK x y k y N k y N
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The standard  Theory of the approximation of the function 

, forO� ∈ Ʌ.�\/03  O� ∈ Ʌ.�\/03  is a polynomial of  

total degree (O� − 1) × (O� − 1). 
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(24) 
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,

, 2
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, , 2

,

,

n m D
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n m n m D

I K

K K

 

   


 


  (25) 

So that: 

,1 2
1, 22 2m mQ P M MD D

min I Q I P 
 

(26) 

�R�,R�is a polynomial of the least squares I 

approximation in �R�,R� , and I (x, y) is approximately 

equal to �R�,R�(�, �). [18] Moreover, if O� = +� + 1and 

O� = +� + 1, then S = �.�,.� . 

 

2-3-1. Calculate Discrete Derivatives Using Blocks 

In order to detect edge points, the whole image of L is 

analyzed using the block T�,K , with fixed size (+� + 1) ×
(+� + 1). So that �� < +�and �� < +�. All blocks are 

assumed to be of the same size [15]. First, some 

definitions are mentioned. If J�,Kis a real matrix of size 

U × V, then W�refers to the transient matrix. And vec (A) 

is the vector column (u v) and is defined as: 

vec(A)=(J��, … , JX�, J��, … , JX�, … J�Y , … , JXY)� 

So that: (J�ZZZ = (J�(0), … , J�(��), [\ZZZZ =
([\(0), … , [\(��) respectively two rows of vector with 

order (�� + 1)and (�� + 1), so that: 
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
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









 (27) 

The matrix ]��,��(�, ^) = J�
�ZZZ[\ZZZZhas the size (�� + 1) ×

(�� + 1)and depends only on the size of the blocks. 

 

Let _\,�(�, �) be the coefficient given by equation (24 

)with respect to ` = `�,K . This coefficient can be 

calculated as follows: 

      
1 2, , ,

2
, ,  ,m n i j n ni j vec L vec C n m   (28) 

So that 〈. , . 〉�is the result of the distance of the Euclidean 

inner product on 
(��M�)(��M�).  a\,� is a matrix with 

coefficients _\,�(�, �)with i=0,…, �� و   j=0,…, ��. From 

formula (24) we can conclude that  a\,� = T ∗
]��,��(�, ^). The * symbol refers to the discrete 

convolution of the two-dimensional matrix [14]. By using 

a discrete Fourier transform, the convolution of this 

matrix can be optimized and the processor time can be 

significantly improved. 

For each pixel (�, �)of the image L, the partial derivative 

of the discrete formula is calculated by formula (21) with 

the approximation of formula (24). Just keep in mind that 

the information is stored in neighborhoods T�,K. When the 

processing is complete, two matrices �
and ��are 

obtained with the same size L, such that each cell (i, j) is 

a partial derivative with respect to x or y. Therefore, this 

matrix allows for a good estimate of the gradient 

coefficient at each point (i, j) of the image L. In order to 

have numerical tests, the parameters of Krawtchouk 

polynomial are considered as follows: 

�� = �� = �c = 4, 4� = 4� = 4 =
1
2 
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Discrete derivative calculations are approximated by 

taking the block information  T�,Kwith a degree of 5 × 5 

and with center (�, �): 

 T�,K =

e
f
f
f
f
g S(� − 2, � − 2) S(� − 2, � − 1)  S(� − 2, �)      S(� − 2, � + 1)       S(� − 2, � + 2)

S(� − 1, � − 2) S(� − 1, � − 1)      S(� − 1, �)        S(� − 1, � + 1)    S(� − 1, � + 2)
S(�, � − 2) S(�, � − 1) S(�, �)          S(�, � + 1)             S(�, � + 2)

S(� + 1, � − 2)    S(� + 1, � − 1)          S(� + 1, �)           S(� + 1, � + 1)   S(� + 1, � + 2)    
S(� + 2, � − 2)    S(� + 2, � − 1)          S(� + 2, �)           S(� + 2, � + 1)   S(� + 2, � + 2)

 

h
i
i
i
i
j

 

From formula (24) and taking O� = O� = Ocand for 

� = 0, … , +� and j=0,…, +�  , the polynomial block 

approximation is as follows: 

     
 

,

, , 2, 2

 ,

t t

t t

i j

M M

n n

P x y I i x j y

x y

    

 ε

 (29) 

For each constant point (�, �), the polynomial 

�Rk ,Rk
(�,K) (�, �)is obtained using formula (24), and the 

coefficients _\,�(�, �)is obtained using formula (28).Now 

considering the fact that for x = y = 2 in the 

approximation of formula (29), the point (i, j) is 

considered as the center of the block T�,K , and then the 

first order partial differences of  �Rk,Rk
(�,K) (�, �)is calculated 

using the central difference formula for the Krawtchouk 

polynomial using formula (3) and formula (22),(23). For 

example, for Oc = 2  it is: 
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(31) 

It is seen from Formulas (30) and (31) that it is not 

necessary to calculate all matrices _\,� for calculating 

�
and ��. in fact, Using Formula (31), the matrices �
 

and ��are obtained[15] and the partial derivative with 

respect to x and y is respectively equal to: 

 

 

1,0 1,2 3,2 3.0

0,1 2,1 2,3 0,3

3

2

3
 

2

x

y

P
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   

   

   

   

 (32) 

To ensure that all image boundary pixels are examined, 

missing pixels are replaced within the Convolution 

operation. By reversing the values inside the boundaries 

of the image L, they are obtained against the boundary 

pixels.  

 

3-Experimental results 

In this section, the datasets used for the tests are first 

introduced. The proposed method is then examined using 

the proposed criteria such as precision. Finally, the result 

of applying the algorithm is compared with the method 

ANDD. 

To evaluate the proposed method, a dataset called ’ Image 

Database and Corner Detection’ and some standard 

images that are commonly used to evaluate corner 

detection in papers are used1. Each of the images has 

dimensions 256 * 256 and 512 * 512 or different 

dimensions and gray. In the following, criteria for 

evaluation on the data set are used and their results are 

presented in the form of a table. In the following, a 

sample of the images used by the dataset brought. 

 
Figure 4- a sample of dataset images 

 

The outputs of the algorithm of the proposed method and 

ANDD method on the data set are given in the following 

figure. 

  

 

Figure 5- shows this example of the output image of the data set. The 

images on the left are related to the ANDD method and the right 

images of the proposed method. 

 

3-1. evaluation criteria 

In this section, the precision of the proposed algorithm is 

evaluated. In order to assess the qualities of the corners, 

the following criteria are used: 

One of the criteria that can be used to evaluate the 

proposed method is to check the Precision of these two 

algorithms under the following equation: 

TP
precision

TP FP



 (33) 

TP: Points that are correctly identified (points that were 

corners and correctly identified). 

FP: Points that are incorrectly identified are correct 

(points not cornered but mistakenly identified by the 

corner) 

The results of the evaluation of precision on the set of 

images examined are given in the following table. 

                                                             
1  http://www.dabi.temple.edu/~shape/MPEG7/dataset.html 
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Table 1. Evaluation of the average precision of the proposed method 

and ANDD method 

images 
Precision of 

proposed method 

Precision of 

ANDD 

image1 1 0.66 

image2 0.6 0.53 

image3 0.41 0.39 

image4 0.4 0.36 

image5 0.6 0.55 

image6 0.43 0.21 

image7 0.19 0.12 

image8 0.29 0.27 

image9 1 0.56 

image10 1 0.66 

image11 0.9 0.52 

image12 0.8 0.29 

image13 0.92 0.66 

image14 1 0.76 

image15 1 0.54 

image16 1 0.5 

image17 1 0.75 

image18 1 0.7 

image19 1 0.29 

image20 0.8 0.76 

Average precision 0.767 0.504 

 

As shown in the table above, the average precision of the 

proposed method is better than the ANDD method, which 

indicates the superiority of the proposed method. 

 

4. Conclusion 

In this article, firstly, the study of studies on the extraction 

of corner points in the articles was discussed and the 

methods presented are classified into two general 

categories, based on the contour and based on the 

intensity. Comparisons between these two methods show 

the superiority of the contour-based methods. For this 

reason, the contour-based method is the basis for the 

study of this paper. Subsequently, the problem was 

presented conceptually and accurately with scientific 

definitions, taking into account the basic concepts. To 

solve the problem, the idea of using the Krawtchouk 

polynomial was proposed. 

First, a series of concepts were expressed in relation to 

the proposed algorithm. Then each of the steps in the 

algorithm is fully explained. In the proposed method, 

cravings were used to obtain the image edges of a 

Krawtchouk polynomial. The evaluation of the 

experimental results between the proposed method and 

the method ANDD shows the superiority of the proposed 

method in terms of precision. 
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